Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Evol Appl ; 17(3): e13680, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38505217

RESUMEN

Genetic monitoring of Pacific salmon in the Columbia River basin provides crucial information to fisheries managers that is otherwise challenging to obtain using traditional methods. Monitoring programs such as genetic stock identification (GSI) and parentage-based tagging (PBT) involve genotyping tens of thousands of individuals annually. Although rare, these large sample collections inevitably include misidentified species, which exhibit low genotyping success on species-specific Genotyping-in-Thousands by sequencing (GT-seq) panels. For laboratories involved in large-scale genotyping efforts, diagnosing non-target species and reassigning them to the appropriate monitoring program can be costly and time-consuming. To address this problem, we identified 19 primer pairs that exhibit consistent cross-species amplification among salmonids and contain 51 species informative variants. These genetic markers reliably discriminate among 11 salmonid species and two subspecies of Cutthroat Trout and have been included in species-specific GT-seq panels for Chinook Salmon, Coho Salmon, Sockeye Salmon, and Rainbow Trout commonly used for Pacific salmon genetic monitoring. The majority of species-informative amplicons (16) were newly identified from the four existing GT-seq panels, thus demonstrating a low-cost approach to species identification when using targeted sequencing methods. A species-calling script was developed that is tailored for routine GT-seq genotyping pipelines and automates the identification of non-target species. Following extensive testing with empirical and simulated data, we demonstrated that the genetic markers and accompanying script accurately identified species and are robust to missing genotypic data and low-frequency, shared polymorphisms among species. Finally, we used these tools to identify Coho Salmon incidentally caught in the Columbia River Chinook Salmon sport fishery and used PBT to determine their hatchery of origin. These molecular and computing resources provide a valuable tool for Pacific salmon conservation in the Columbia River basin and demonstrate a cost-effective approach to species identification for genetic monitoring programs.

2.
Evol Appl ; 17(3): e13667, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38463750

RESUMEN

Modern fisheries management strives to balance opposing goals of protection for weak stocks and opportunity for harvesting healthy stocks. Test fisheries can aid management of anadromous fishes if they can forecast the strength and timing of an annual run with adequate time to allow fisheries planning. Integration of genetic stock identification (GSI) can further maximize utility of test fisheries by resolving run forecasts into weak- and healthy-stock subcomponents. Using 5 years (2017-2022) of test fishery data, our study evaluated accuracy, resolution, and lead time of predictions for stock-specific run timing and abundance of Columbia River spring Chinook salmon (Oncorhynchus tshawytscha). We determined if this test fishery (1) could use visual stock identification (VSI) to forecast at the coarse stock resolution (i.e., classification of "lower" vs. "upriver" stocks) upon which current management is based and (2) could be enhanced with GSI to forecast at higher stock resolution. VSI accurately identified coarse stocks (83.3% GSI concordance), and estimated a proxy for abundance (catch per unit effort, CPUE) of the upriver stock in the test fishery that was correlated (R 2 = 0.90) with spring Chinook salmon abundance at Bonneville dam (Rkm 235). Salmon travel rates (~8.6 Rkm/day) provided predictions with 2-week lead time prior to dam passage. Importantly, GSI resolved this predictive ability as finely as the hatchery broodstock level. Lower river stock CPUE in the test fishery was correlated with abundance at Willamette Falls (Rkm 196, R 2 = 0.62), but could not be as finely resolved as achieved for upriver stocks. We described steps to combine VSI and GSI to provide timely in-season information and with prediction accuracy of ~12.4 mean absolute percentage error and high stock resolution to help plan Columbia River mainstem fisheries.

3.
Evol Appl ; 17(2): e13663, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38390377

RESUMEN

Climate-induced expansion of invasive hybridization (breeding between invasive and native species) poses a significant threat to the persistence of many native species worldwide. In the northern U.S. Rocky Mountains, hybridization between native cutthroat trout and non-native rainbow trout has increased in recent decades due, in part, to climate-driven increases in water temperature. It has been postulated that invasive hybridization may enhance physiological tolerance to climate-induced thermal stress because laboratory studies indicate that rainbow trout have a higher thermal tolerance than cutthroat trout. Here, we assessed whether invasive hybridization improves cardiac performance response to acute water temperature stress of native wild trout populations. We collected trout from four streams with a wide range of non-native admixture among individuals and with different temperature and streamflow regimes in the upper Flathead River drainage, USA. We measured individual cardiac performance (maximum heart rate, "MaxHR", and temperature at arrhythmia, "ArrTemp") during laboratory trials with increasing water temperatures (10-28°C). Across the study populations, we observed substantial variation in cardiac performance of individual trout when exposed to thermal stress. Notably, we found significant differences in the cardiac response to thermal regimes among native cutthroat trout populations, suggesting the importance of genotype-by-environment interactions in shaping the physiological performance of native cutthroat trout. However, rainbow trout admixture had no significant effect on cardiac performance (MaxHR and ArrTemp) within any of the three populations. Our results indicate that invasive hybridization with a warmer-adapted species does not enhance the cardiac performance of native trout under warming conditions. Maintaining numerous populations across thermally and hydrologically diverse stream environments will be crucial for native trout to adapt and persist in a warming climate.

4.
Evol Appl ; 17(2): e13610, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38343774

RESUMEN

Genetic stock identification (GSI) is an important fisheries management tool to identify the origin of fish harvested in mixed stock fisheries. Periodic updates of genetic baselines can improve performance via the addition of unsampled or under-sampled populations and the inclusion of more informative markers. We used a combination of baselines to evaluate how population representation, marker number, and marker type affected the performance and accuracy of genetic stock assignments (self-assignment, bias, and holdout group tests) for steelhead (Oncorhynchus mykiss) in the Snake River basin. First, we compared the performance of an existing genetic baseline with a newly developed one which had a reduced number of individuals from more populations using the same set of markers. Self-assignment rates were significantly higher (p < 0.001; +5.4%) for the older, larger baseline, bias did not differ significantly between the two, but there was a significant improvement in performance for the new baseline in holdout results (p < 0.001; mean increase of 25.0%). Second, we compared the performance of the new baseline with increased numbers of genetic markers (~2x increase of single-nucleotide polymorphisms; SNPs) for the same set of baseline individuals. In this comparison, results produced significantly higher rates of self-assignment (p < 0.001; +9.7%) but neither bias nor leave-one-out were significantly affected. Third, we compared 334 SNPs versus opportunistically discovered microhaplotypes from the same amplicons for the new baseline, and showed the latter produced significantly higher rates of self-assignment (p < 0.01; +2.6%), similar bias, but slightly lower holdout performance (-0.1%). Combined, we show the performance of genetic baselines can be improved via representative and efficient sampling, that increased marker number consistently improved performance over the original baseline, and that opportunistic discovery of microhaplotypes can lead to small improvements in GSI performance.

5.
Evol Appl ; 17(2): e13626, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38343781

RESUMEN

With the discovery of a major effect region (GREB1L, ROCK1) for adult migration timing in genomes of both Chinook Salmon and Steelhead, several subsequent studies have investigated the effect size and distribution of early and late migration alleles among populations in the Columbia River. Here, we synthesize the results of these studies for the major lineages of Chinook Salmon and Steelhead that include highly distinct groups in the interior Columbia River that exhibit atypical life histories from most coastal lineage populations of these two species. Whole-genome studies with high marker density have provided extensive insight into SNPs most associated with adult migration timing, and suites of markers for each species have been genotyped in large numbers of individuals to further validate phenotypic effects. For Steelhead, the largest phenotypic effect sizes have been observed in the coastal lineage (36% of variation for passage timing at Bonneville Dam; 43% of variation for tributary arrival timing) compared to the inland lineage (7.5% of variation for passage timing at Bonneville Dam; 8.4% of variation for tributary arrival timing) that overwinter in freshwater prior to spawning. For Chinook Salmon, large effect sizes have been observed in all three lineages for multiple adult migration phenotypes (Coastal lineage: percentage of variation of 27.9% for passage timing at Bonneville Dam, 28.7% for arrival timing for spawning; Interior ocean type: percentage of variation of 47.6% for passage timing at Bonneville Dam, 39.6% for tributary arrival timing, 77.9% for arrival timing for spawning; Interior stream type: percentage of variation of 35.3% for passage at Bonneville Dam, 9.8% for tributary arrival timing, 4.7% for arrival timing for spawning). Together, these results have extended our understanding of genetic variation associated with life history diversity in distinct populations of the Columbia River, however, much research remains necessary to determine the causal mechanism for this major effect region on migration timing in these species.

6.
Evol Appl ; 17(2): e13607, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38343782

RESUMEN

By the 1980s, after decades of declining numbers in the mid-1900s, Coho salmon (Oncorhynchus kisutch) were considered extirpated from the interior Columbia River. In the mid-1990s, the Confederated Tribes of the Umatilla Indian Reservation, the Confederated Tribes and Bands of the Yakama Nation, and the Nez Perce Tribe began successful reintroduction programs of Coho salmon upstream of Bonneville Dam, but which were initially sourced from lower Columbia River hatcheries. Here we present the first Coho salmon parentage-based tagging (PBT) baseline from seven hatchery programs located in the interior Columbia River basin, and two sites at or downstream of Bonneville Dam, composed of over 32,000 broodstock samples. Analyses of baseline collections revealed that genetic structure followed a temporal pattern based on 3-year broodlines rather than geographic location or stocking history. Across hatchery programs, similar levels of genetic diversity was present. The PBT baseline provided multiple direct applications such as identification of origin for Coho salmon collected in a mixed stock at Priest Rapids Dam and the detection of the proportion and distribution of hatchery-origin fish on the spawning grounds in the Methow River basin. The PBT baseline for Coho salmon is freely available for use and can be downloaded from FishGen.net.

7.
Mol Ecol Resour ; 24(2): e13893, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37966259

RESUMEN

Environmental change is intensifying the biodiversity crisis and threatening species across the tree of life. Conservation genomics can help inform conservation actions and slow biodiversity loss. However, more training, appropriate use of novel genomic methods and communication with managers are needed. Here, we review practical guidance to improve applied conservation genomics. We share insights aimed at ensuring effectiveness of conservation actions around three themes: (1) improving pedagogy and training in conservation genomics including for online global audiences, (2) conducting rigorous population genomic analyses properly considering theory, marker types and data interpretation and (3) facilitating communication and collaboration between managers and researchers. We aim to update students and professionals and expand their conservation toolkit with genomic principles and recent approaches for conserving and managing biodiversity. The biodiversity crisis is a global problem and, as such, requires international involvement, training, collaboration and frequent reviews of the literature and workshops as we do here.


Asunto(s)
Conservación de los Recursos Naturales , Genómica , Humanos , Conservación de los Recursos Naturales/métodos , Biodiversidad , Genoma
8.
Ecol Evol ; 13(5): e9961, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37181203

RESUMEN

We call for journals to commit to requiring open data be archived in a format that will be simple and clear for readers to understand and use. If applied consistently, these requirements will allow contributors to be acknowledged for their work through citation of open data, and facilitate scientific progress.

9.
Cell Rep ; 42(3): 112263, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36930644

RESUMEN

Programmed DNA loss is a gene silencing mechanism that is employed by several vertebrate and nonvertebrate lineages, including all living jawless vertebrates and songbirds. Reconstructing the evolution of somatically eliminated (germline-specific) sequences in these species has proven challenging due to a high content of repeats and gene duplications in eliminated sequences and a corresponding lack of highly accurate and contiguous assemblies for these regions. Here, we present an improved assembly of the sea lamprey (Petromyzon marinus) genome that was generated using recently standardized methods that increase the contiguity and accuracy of vertebrate genome assemblies. This assembly resolves highly contiguous, somatically retained chromosomes and at least one germline-specific chromosome, permitting new analyses that reconstruct the timing, mode, and repercussions of recruitment of genes to the germline-specific fraction. These analyses reveal major roles of interchromosomal segmental duplication, intrachromosomal duplication, and positive selection for germline functions in the long-term evolution of germline-specific chromosomes.


Asunto(s)
Petromyzon , Animales , Petromyzon/genética , Cromosomas/genética , ADN/genética , Genoma , Vertebrados/genética , Células Germinativas , Evolución Molecular , Filogenia
10.
Mol Ecol ; 32(11): 2818-2834, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36811385

RESUMEN

The distribution of ecotypic variation in natural populations is influenced by neutral and adaptive evolutionary forces that are challenging to disentangle. This study provides a high-resolution portrait of genomic variation in Chinook salmon (Oncorhynchus tshawytscha) with emphasis on a region of major effect for ecotypic variation in migration timing. With a filtered data set of ~13 million single nucleotide polymorphisms (SNPs) from low-coverage whole genome resequencing of 53 populations (3566 barcoded individuals), we contrasted patterns of genomic structure within and among major lineages and examined the extent of a selective sweep at a major effect region underlying migration timing (GREB1L/ROCK1). Neutral variation provided support for fine-scale structure of populations, while allele frequency variation in GREB1L/ROCK1 was highly correlated with mean return timing for early and late migrating populations within each of the lineages (r2  = .58-.95; p < .001). However, the extent of selection within the genomic region controlling migration timing was much narrower in one lineage (interior stream-type) compared to the other two major lineages, which corresponded to the breadth of phenotypic variation in migration timing observed among lineages. Evidence of a duplicated block within GREB1L/ROCK1 may be responsible for reduced recombination in this portion of the genome and contributes to phenotypic variation within and across lineages. Lastly, SNP positions across GREB1L/ROCK1 were assessed for their utility in discriminating migration timing among lineages, and we recommend multiple markers nearest the duplication to provide highest accuracy in conservation applications such as those that aim to protect early migrating Chinook salmon. These results highlight the need to investigate variation throughout the genome and the effects of structural variants on ecologically relevant phenotypic variation in natural species.


Asunto(s)
Variación Genética , Salmón , Humanos , Animales , Variación Genética/genética , Alelos , Salmón/genética , Frecuencia de los Genes/genética , Genómica , Quinasas Asociadas a rho/genética
11.
Mol Ecol ; 32(4): 800-818, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36478624

RESUMEN

Aquatic ectotherms are predicted to harbour genomic signals of local adaptation resulting from selective pressures driven by the strong influence of climate conditions on body temperature. We investigated local adaptation in redband trout (Oncorhynchus mykiss gairdneri) using genome scans for 547 samples from 11 populations across a wide range of habitats and thermal gradients in the interior Columbia River. We estimated allele frequencies for millions of single nucleotide polymorphism loci (SNPs) across populations using low-coverage whole genome resequencing, and used population structure outlier analyses to identify genomic regions under divergent selection between populations. Twelve genomic regions showed signatures of local adaptation, including two regions associated with genes known to influence migration and developmental timing in salmonids (GREB1L, ROCK1, SIX6). Genotype-environment association analyses indicated that diurnal temperature variation was a strong driver of local adaptation, with signatures of selection driven primarily by divergence of two populations in the northern extreme of the subspecies range. We also found evidence for adaptive differences between high-elevation desert vs. montane habitats at a smaller geographical scale. Finally, we estimated vulnerability of redband trout to future climate change using ecological niche modelling and genetic offset analyses under two climate change scenarios. These analyses predicted substantial habitat loss and strong genetic shifts necessary for adaptation to future habitats, with the greatest vulnerability predicted for high-elevation desert populations. Our results provide new insight into the complexity of local adaptation in salmonids, and important predictions regarding future responses of redband trout to climate change.


Asunto(s)
Oncorhynchus mykiss , Animales , Oncorhynchus mykiss/genética , Aclimatación/genética , Genoma/genética , Adaptación Fisiológica/genética , Frecuencia de los Genes/genética , Polimorfismo de Nucleótido Simple/genética
12.
Mol Ecol ; 32(3): 539-541, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36453162

RESUMEN

The mechanisms underlying local adaptation, where populations evolve traits that confer advantages to the local environment, is a central topic for understanding evolution in natural systems. Conservation goals for species at risk often include defining population boundaries by identifying gene diversity, genetic differentiation, and adaptation to local environments. In this issue of Molecular Ecology, Rougemont et al. (2022) combine genome-wide SNP data with an extensive set of landscape variables to study the genomic mechanisms of local adaptation in the entire North American range of Coho salmon (Oncorhynchus kisutch), representing one of the largest studies of its kind. Migration distance, defined as the distance adult Coho salmon migrate from the ocean to their freshwater spawning ground, was found to be the primary factor driving local adaptation in this species. With climatic changes altering flow regimes and therefore the success of Coho salmon to return to spawning grounds, understanding environmental drivers and the genomic basis for migration is essential in the conservation of anadromous salmonids.


Asunto(s)
Oncorhynchus kisutch , Animales , Oncorhynchus kisutch/genética , Genoma , Adaptación Fisiológica/genética , Aclimatación , Agua Dulce
13.
J Hered ; 113(2): 121-144, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35575083

RESUMEN

The increasing feasibility of assembling large genomic datasets for non-model species presents both opportunities and challenges for applied conservation and management. A popular theme in recent studies is the search for large-effect loci that explain substantial portions of phenotypic variance for a key trait(s). If such loci can be linked to adaptations, 2 important questions arise: 1) Should information from these loci be used to reconfigure conservation units (CUs), even if this conflicts with overall patterns of genetic differentiation? 2) How should this information be used in viability assessments of populations and larger CUs? In this review, we address these questions in the context of recent studies of Chinook salmon and steelhead (anadromous form of rainbow trout) that show strong associations between adult migration timing and specific alleles in one small genomic region. Based on the polygenic paradigm (most traits are controlled by many genes of small effect) and genetic data available at the time showing that early-migrating populations are most closely related to nearby late-migrating populations, adult migration differences in Pacific salmon and steelhead were considered to reflect diversity within CUs rather than separate CUs. Recent data, however, suggest that specific alleles are required for early migration, and that these alleles are lost in populations where conditions do not support early-migrating phenotypes. Contrasting determinations under the US Endangered Species Act and the State of California's equivalent legislation illustrate the complexities of incorporating genomics data into CU configuration decisions. Regardless how CUs are defined, viability assessments should consider that 1) early-migrating phenotypes experience disproportionate risks across large geographic areas, so it becomes important to identify early-migrating populations that can serve as reliable sources for these valuable genetic resources; and 2) genetic architecture, especially the existence of large-effect loci, can affect evolutionary potential and adaptability.


Asunto(s)
Oncorhynchus mykiss , Salmón , Alelos , Animales , Evolución Biológica , Especies en Peligro de Extinción , Oncorhynchus mykiss/genética , Salmón/genética
14.
Front Genet ; 13: 795850, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35368705

RESUMEN

Anadromous fish experience physiological modifications necessary to migrate between vastly different freshwater and marine environments, but some species such as Oncorhynchus mykiss demonstrate variation in life history strategies with some individuals remaining exclusively resident in freshwater, whereas others undergo anadromous migration. Because there is limited understanding of genes involved in this life history variation across populations of this species, we evaluated the genomic difference between known anadromous (n = 39) and resident (n = 78) Oncorhynchus mykiss collected from the Klickitat River, WA, USA, with whole-genome resequencing methods. Sequencing of these collections yielded 5.64 million single-nucleotide polymorphisms that were tested for significant differences between resident and anadromous groups along with previously identified candidate gene regions. Although a few regions of the genome were marginally significant, there was one region on chromosome Omy12 that provided the most consistent signal of association with anadromy near two annotated genes in the reference assembly: COP9 signalosome complex subunit 6 (CSN6) and NACHT, LRR, and PYD domain-containing protein 3 (NLRP3). Previously identified candidate genes for anadromy within the inversion region of chromosome Omy05 in coastal steelhead and rainbow trout were not informative for this population as shown in previous studies. Results indicate that the significant region on chromosome Omy12 may represent a minor effect gene for male anadromy and suggests that this life history variation in Oncorhynchus mykiss is more strongly driven by other mechanisms related to environmental rearing such as epigenetic modification, gene expression, and phenotypic plasticity. Further studies into regulatory mechanisms of this trait are needed to understand drivers of anadromy in populations of this protected species.

15.
Evol Appl ; 15(1): 3-21, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35126645

RESUMEN

The rate of global climate change is projected to outpace the ability of many natural populations and species to adapt. Assisted migration (AM), which is defined as the managed movement of climate-adapted individuals within or outside the species ranges, is a conservation option to improve species' adaptive capacity and facilitate persistence. Although conservation biologists have long been using genetic tools to increase or maintain diversity of natural populations, genomic techniques could add extra benefit in AM that include selectively neutral and adaptive regions of the genome. In this review, we first propose a framework along with detailed procedures to aid collaboration among scientists, agencies, and local and regional managers during the decision-making process of genomics-guided AM. We then summarize the genomic approaches for applying AM, followed by a literature search of existing incorporation of genomics in AM across taxa. Our literature search initially identified 729 publications, but after filtering returned only 50 empirical studies that were either directly applied or considered genomics in AM related to climate change across taxa of plants, terrestrial animals, and aquatic animals; 42 studies were in plants. This demonstrated limited application of genomic methods in AM in organisms other than plants, so we provide further case studies as two examples to demonstrate the negative impact of climate change on non-model species and how genomics could be applied in AM. With the rapidly developing sequencing technology and accumulating genomic data, we expect to see more successful applications of genomics in AM, and more broadly, in the conservation of biodiversity.

16.
Ecol Evol ; 11(23): 16890-16908, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34938480

RESUMEN

Many species that undergo long breeding migrations, such as anadromous fishes, face highly heterogeneous environments along their migration corridors and at their spawning sites. These environmental challenges encountered at different life stages may act as strong selective pressures and drive local adaptation. However, the relative influence of environmental conditions along the migration corridor compared with the conditions at spawning sites on driving selection is still unknown. In this study, we performed genome-environment associations (GEA) to understand the relationship between landscape and environmental conditions driving selection in seven populations of the anadromous Chinook salmon (Oncorhynchus tshawytscha)-a species of important economic, social, cultural, and ecological value-in the Columbia River basin. We extracted environmental variables for the shared migration corridors and at distinct spawning sites for each population, and used a Pool-seq approach to perform whole genome resequencing. Bayesian and univariate GEA tests with migration-specific and spawning site-specific environmental variables indicated many more candidate SNPs associated with environmental conditions at the migration corridor compared with spawning sites. Specifically, temperature, precipitation, terrain roughness, and elevation variables of the migration corridor were the most significant drivers of environmental selection. Additional analyses of neutral loci revealed two distinct clusters representing populations from different geographic regions of the drainage that also exhibit differences in adult migration timing (summer vs. fall). Tests for genomic regions under selection revealed a strong peak on chromosome 28, corresponding to the GREB1L/ROCK1 region that has been identified previously in salmonids as a region associated with adult migration timing. Our results show that environmental variation experienced throughout migration corridors imposed a greater selective pressure on Chinook salmon than environmental conditions at spawning sites.

17.
Evol Appl ; 14(9): 2273-2285, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34603498

RESUMEN

Conserving life-history variation is a stated goal of many management programs, but the most effective means by which to accomplish this are often far from clear. Early- and late-migrating forms of Chinook salmon (Oncorhynchus tshawytscha) face unequal pressure from natural and anthropogenic forces that may alter the impacts of genetic variation underlying heritable migration timing. Genomic regions of chromosome 28 are known to be strongly associated with migration variation in adult Chinook salmon, but it remains unclear whether there is consistent association among diverse lineages and populations in large basins such as the Columbia River. With high-throughput genotyping (GT-seq) and phenotyping methods, we examined the association of genetic variation in 28 markers (spanning GREB1L to ROCK1 of chromosome 28) with individual adult migration timing characteristics gleaned from passive integrated transponder recordings of over 5000 Chinook salmon from the three major phylogeographic lineages that inhabit the Columbia River Basin. Despite the strong genetic differences among them in putatively neutral genomic regions, each of the three lineages exhibited very similar genetic variants in the chromosome 28 region that were significantly associated with adult migration timing phenotypes. This is particularly notable for the interior stream-type lineage, which exhibits an earlier and more constrained freshwater entry than the other lineages. In both interior stream-type and interior ocean-type lineages of Chinook salmon, heterozygotes of the most strongly associated linkage groups had largely intermediate migration timing relative to homozygotes, and results indicate codominance or possibly marginal partial dominance of the allele associated with early migration. Our results lend support to utilization of chromosome 28 variation in tracking and predicting run timing in these lineages of Chinook salmon in the Columbia River.

18.
Evol Appl ; 14(8): 1929-1957, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34429740

RESUMEN

Lifetime reproductive success (LRS), the number of offspring produced over an organism's lifetime, is a fundamental component of Darwinian fitness. For taxa such as salmonids with multiple species of conservation concern, understanding the factors affecting LRS is critical for the development and implementation of successful conservation management practices. Here, we reviewed the published literature to synthesize factors affecting LRS in salmonids including significant effects of hatchery rearing, life history, and phenotypic variation, and behavioral and spawning interactions. Additionally, we found that LRS is affected by competitive behavior on the spawning grounds, genetic compatibility, local adaptation, and hybridization. Our review of existing literature revealed limitations of LRS studies, and we emphasize the following areas that warrant further attention in future research: (1) expanding the range of studies assessing LRS across different life-history strategies, specifically accounting for distinct reproductive and migratory phenotypes; (2) broadening the variety of species represented in salmonid fitness studies; (3) constructing multigenerational pedigrees to track long-term fitness effects; (4) conducting LRS studies that investigate the effects of aquatic stressors, such as anthropogenic effects, pathogens, environmental factors in both freshwater and marine environments, and assessing overall body condition, and (5) utilizing appropriate statistical approaches to determine the factors that explain the greatest variation in fitness and providing information regarding biological significance, power limitations, and potential sources of error in salmonid parentage studies. Overall, this review emphasizes that studies of LRS have profoundly advanced scientific understanding of salmonid fitness, but substantial challenges need to be overcome to assist with long-term recovery of these keystone species in aquatic ecosystems.

19.
Mol Ecol Resour ; 21(3): 641-652, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33326691

RESUMEN

The quality of genome assemblies has improved rapidly in recent years due to continual advances in sequencing technology, assembly approaches, and quality control. In the field of molecular ecology, this has led to the development of exceptional quality genome assemblies that will be important long-term resources for broader studies into ecological, conservation, evolutionary, and population genomics of naturally occurring species. Moreover, the extent to which a single reference genome represents the diversity within a species varies: pan-genomes will become increasingly important ecological genomics resources, particularly in systems found to have considerable presence-absence variation in their functional content. Here, we highlight advances in technology that have raised the bar for genome assembly and provide guidance on standards to achieve exceptional quality reference genomes. Key recommendations include the following: (a) Genome assemblies should include long-read sequencing except in rare cases where it is effectively impossible to acquire adequately preserved samples needed for high molecular weight DNA standards. (b) At least one scaffolding approach should be included with genome assembly such as Hi-C or optical mapping. (c) Genome assemblies should be carefully evaluated, this may involve utilising short read data for genome polishing, error correction, k-mer analyses, and estimating the percent of reads that map back to an assembly. Finally, a genome assembly is most valuable if all data and methods are made publicly available and the utility of a genome for further studies is verified through examples. While these recommendations are based on current technology, we anticipate that future advances will push the field further and the molecular ecology community should continue to adopt new approaches that attain the highest quality genome assemblies.


Asunto(s)
Genoma , Genómica , Análisis de Secuencia de ADN , Genómica/tendencias
20.
Mol Ecol ; 30(1): 162-174, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33135227

RESUMEN

Adaptation to local environments involves evolution of ecologically important traits and underlying physiological processes. Here, we used low coverage whole-genome resequencing (lcWGR) on individuals to identify genome regions involved in thermal adaptation in wild redband trout Oncorhynchus mykiss gairdneri, a subspecies of rainbow trout that inhabits ecosystems ranging from cold montane forests to high elevation deserts. This study includes allele frequency-based analyses for selective sweeps among populations, followed by multiple association tests for specific sets of phenotypes measured under thermal stress (acute and chronic survival/mortality; high or low cardiac performance groups). Depending on the groups in each set of analyses, sequencing reads covered 43%-75% of the genome at ≥15× and each analysis included millions of SNPs across the genome. In tests for selective sweeps among populations, a total of six chromosomal regions were significant. The further association tests for specific phenotypes revealed that the region on chromosome 4 was consistently the most significant and contains the cerk gene (ceramide kinase). This study provides insight into a potential genetic mechanism of local thermal adaptation and suggests cerk may be an important candidate gene. However, further validation of this cerk gene is necessary to determine if the association with cardiac performance results in a functional role to influence thermal performance when exposed to high water temperatures and hypoxic conditions.


Asunto(s)
Oncorhynchus mykiss , Aclimatación/genética , Animales , Ecosistema , Genoma/genética , Genómica , Oncorhynchus mykiss/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...